
Anti-piracy system: Legal Enforcement/licensing
Executive Summary

Pradeep Varma
Buffnstaff Software and Services Private Limited
634 Sector 21, Gurgaon Haryana 122016, India

sales@buffnstaff.com
Copyright c© 2015 BNS. All rights reserved.

1. INTRODUCTION
Intellectual Property may be the most valuable property in
your organization. Each time you sell, lease, rent, or share
your property with customers, corporates, or the public, you
run the risk of the property being copied and used without
permission in ways and means unacceptable to you. Copy-
right protection may not be enough for your purpose. Fur-
ther, copyright assertion, without enforcement, may not be
enough for your purpose.

Businesses almost always have to run within a legal and
auditory framework, wherein electronic support, e.g. web-
site, intranet, must obey prescribed regulations. It is impor-
tant then, to build the electronic infrastructure in a manner
where demonstrable compliance with regulations is manifest.

Buff ’N’ Staffr has developed a proprietary, comprehensive,
extremely lightweight law or rule enforcement system for
the intranet and internet presence of companies, including
websites. The system comprises a software licensing system
that can be made available on any interface or platform of
choice. Using the tooling, BNSr can build or further develop
a website to enable licensing or legal enforcement capabilities
for software deliverables.

An open source subset of the system, called Paint is available
at www.buffnstaff.com as a part of the Buffnstaff’s Greetings
offering. The Greetings/Paint offering is available with all
client-side software provided both in executable and source
forms for careful review by customers under the Gnu Gen-
eral Public License (GPL). Paint is an illustrative system;
it does not contain patented or proprietary technology that
the company only offers to customers under proprietary li-
censes. A customer may enter into a non-disclosure or confi-
dentiality agreement to know further about the proprietary
system.

Figure 1: Nice World Assumptions – Limited or No
Law Enforcement Needed for Client or Server.

2. THE PAINT ANTI-PIRACY SYSTEM
Laws on copyright (similarly many other laws) are well known
throughout the world. In a nice world assumption, shown
in Figure 1, the law is understood by all parties and fol-
lowed to the letter. Thus enforcement of law is neither nec-
essary, nor carried out and copyright protection is obtained.
In the client server dialog shown in Figure 1, no adverse-
rial action takes place, hence a company’s server stores data
in plaintext form on the machine, including secret keys (or
passwords), and runs any software necessary (shown as a
looping circle). A client machine, not in control of the com-
pany, works similarly, and safely, since adversity is simply
not present. Indeed, in such a world, the need for secret
keys and cryptography may be questioned. However, since
laws may not apply uniformly everywhere on the globe such
as privacy laws, one may assume that in the communication
path from the client machine to the server, there may be
eavesdropping on the communication line, requiring data en-
cryption during transport to protect against intruders. Thus
adverserial action, if any, is contained and limited and as-
sumed to be only during transport and not directly on the
machines of interest to a company and its customers.

Such nice world assumptions however are impractical and
haloed computers with no adverserial intent or action cannot
be assumed. Figure 2 therefore shows a practical world con-
text, in which the company server is assumed to be secure.
The glow in its halo is less, since security is actively main-
tained by measures such as firewalls, secure languages and



Figure 2: Pragmatic World Assumptions – Law En-
formcement Needed for Client (also Server).

cryptography, but still, under company control and protec-
tion, the server handles adverserial action in its stride. The
client computer however, cannot be assumed to have any
halo at all. Company software deployed on the client may
be snooped on, modified hands on (hacked), and acted upon
with any malicious intent. Secret keys cannot be shared
with the client, as the keys may be duplicated and used in
disallowed contexts, such as running more than the licensed
number of copyrighted software instances, by repeatedly re-
using a license key. Company software should not store con-
fidential data on the computer in plaintext form, as it can be
maliciously read, copied and/or modified. Indeed, company
software has to assume complete adverserial control of the
client machine, since a client can well be a pirate, purchas-
ing a legal copy of the software only with a plan to break
and re-distribute it.

The company software has to store and handle confidential
data in encrypted form only on the client machine. Secret
keys have to be available to the company software without
the client or client machine handling them in un-encrypted
form. Secure cryptography, carried out under such adverse-
rial assumptions of the client machine is often referred to
as whitebox cryptography. Unlike classical cryptography,
which assumes secure machines and safe-keeping of secret
keys on secure machines, whitebox cryptography does not
make such an assumption. Whitebox cryptography seeks
mathematical foundations of secure cryptography, such as
reducing key discovery to prime factorisation, while allow-
ing cryptography to be carried out on a machine under the
control of an adversary.

Classical cryptography crystallizes secret information to a
key separate from the algorithm or implementation of cryp-
tography, which is widely studied for establishing quality
of the algorithm and enabling widespread implementation.
The key represents one specific choice from a large com-
binatorial space of key choices, such that guessing a key
by enumerating the space becomes a prohibitive exercise
(e.g. 21024 choices for a 1024-bit key). Classical cryptog-
raphy fails in a whitebox context, because the key becomes
a stumbling block of vulnerability, and hiding the key by en-
cryption only reduces the problem to hiding the second key
used for encryption, which in effect, leaves the problem un-

Figure 3: Basic Paint Architecture.

solved. Given the large momentum of work in classical cryp-
tography, whitebox cryptography is nevertheless attempted
often with a goal of abstracting absent information from a
whitebox implementation, which makes the implementation
secure, while seeking alternative means of delivering the key
information so that cryptography indeed can be carried out.

Paint is a software licensing system for enforcing copyright
protection that does minimal, illustrative whitebox cryptog-
raphy by hiding its cryptography key within the implemen-
tation itself. Thus the key delivery problem is solved by
tying it to its use context. The paint system is provided
in open source form, so the key can be reverse engineered
by studying the code, but that is intentional as the system
is only meant to be illustrative. Whitebox cryptography is
meant to be robust enough to survive adverserial action on
reverse engineered code (e.g. Java source code reverse engi-
neered from bytecode) so that a hidden key is not discovered
without prohibitive cost.

In our proprietary research, we have developed several highly
effective cryptography techniques for a whitebox context,
wherein regardless of a licensed program being reverse en-
gineered, run in a harness or debugger or virtual machine,
or modified (e.g. dynamically-linked library (DLL) substi-
tution), the cryptography implementation cannot be under-
mined.

Paint is unique in its capability to handle masquerade at-
tacks by adversaries. A masquerade attack can be carried
out by an adversary in substituting the library/system func-
tions on the client machine, for example, to offer spurious
serial number or identity information of the computer. Thus
a licensing system that identifies an installation by such in-
formation can be misled into allowing pirated copies that
are fed with forged identity information to obtain allowance.
Paint works by not relying on system fed information thus.
Instead, Paint paints the computer with a specific random
stroke, that is unique to the computer and later identifies the
computer with its chosen unique stroke as opposed to system
generated information. Figure 3 shows the basic Paint sys-
tem, that marks the computer with a stored, encrypted paint
file hidden somewhere in the filesystem on the computer so
that neither does the adversary know what is contained in
a paint file, nor where it is stored.



Figure 4: Paint Premium. A Mobile Architecture.

Since a whitebox environment is targeted, when company
software linked to Paint is downloaded (e.g. the Greetings
software), the download does not arrive with a random seed
that can be observed by an adversary and duplicated. In-
stead, the random seed is generated online within the com-
puter environment. Examples of the random seed are, time
of the day, GPS position of the computer, the number of
running processes on the computer at the time, any ran-
dom fact about the computer. Specfically, the llustrative
Paint system uses the length of the PATH variable to be
the random seed. This is likely to be sufficient to discrimi-
nate distinct client machines and prevent piracy and yet be
generatable again if needed later, as discussed below.

Basic Paint suffers from a problem that the hidden paint
file can be overwritten inadvertantly. So in Figure 4, Paint
Premium, (or Paint Mobile) paints the computer with more
than one stroke, so that at any time, even if a subset of the
strokes survive, the licensing system can work. The paint
files are evolved over time so that they move from their loca-
tions, update their contents, and dissipate or replicate in a
manner that makes them hard to track by an adversary. The
evolving paint system migrates from the installation time
state of the computer so effectively, that a piracy attempt
based on the installation time state becomes infeasible.

The open-source paint system used in the Greetings soft-
ware uses Basic Paint only. It overcomes inadvertant over-
writing by regenerating the paint information dynamically.
Since the PATH variable is not changed very often, the ran-
dom seed can be generated again later, if the paint mark
disappears and the system provides a best-efforts licensing
capability in the long run, if the situation so arises.


